Equações do movimento uniformemente variado
No estudo dos movimentos variados tem particular importância o movimento variado uniformemente. Nesse tipo de movimento, também conhecido como movimento uniformemente variado, a velocidade varia de uma maneira regular, ou seja, em intervalos de tempos iguais ocorrem iguais variações de velocidades. A identificação de um movimento uniformemente variado pode ser feita por meio de uma tabela, de um gráfico ou ainda por suas funções horárias.
Uma vez que em intervalos de tempos iguais, as variações de velocidade são iguais, temos a seguinte definição:
No movimento uniformemente variado, a aceleração escalar é constante e não nula.
Matematicamente, temos:
Função horária da velocidade
Vamos considerar um ponto material em movimento uniformemente variado, como mostra a figura abaixo.
Estando o móvel em MRU, temos a seguinte equação horária:
Para t0 = 0, temos:
A expressão acima é uma função horária da velocidade escalar no MUV. Conhecendo a velocidade inicial do móvel e sua aceleração escalar, podemos determinar a velocidade escalar do móvel em um determinado instante t.
Função horária dos espaços
O conhecimento da função horária de um movimento talvez seja a meta final para se efetuar a sua descrição: relacionar todas as posições do móvel com os respectivos instantes. Como sabemos, o deslocamento escalar ΔS pode ser obtido por meio da área, no gráfico da velocidade em função do tempo:
No gráfico acima temos:
Sendo v = v0 + a.t, a expressão anterior passa a ser:
Que finalmente resulta em:
Essa equação recebe o nome de função horária do espaço do MRU.
Equação de Torricelli
A função horária do espaço relaciona as posições com os instantes. Por outro lado, nos movimentos variados, a cada instante há uma velocidade. Podemos, então, estabelecer uma relação direta entre as posições e as respectivas velocidades. Esse procedimento é conveniente nas situações em que a variável tempo não aparece. Resumidamente, a equação é:
Essa expressão é conhecida como a equação de Torricelli. É bom ressaltar que os problemas resolvidos pela equação de Torricelli podem ser resolvidos também pelas funções horárias do espaço e da velocidade.
Por Domiciano Marques
Graduado em Física
Equipe Brasil Escola
Fonte: http://www.brasilescola.com
Uma vez que em intervalos de tempos iguais, as variações de velocidade são iguais, temos a seguinte definição:
No movimento uniformemente variado, a aceleração escalar é constante e não nula.
Matematicamente, temos:
Função horária da velocidade
Vamos considerar um ponto material em movimento uniformemente variado, como mostra a figura abaixo.
Função horária dos espaços
O conhecimento da função horária de um movimento talvez seja a meta final para se efetuar a sua descrição: relacionar todas as posições do móvel com os respectivos instantes. Como sabemos, o deslocamento escalar ΔS pode ser obtido por meio da área, no gráfico da velocidade em função do tempo:
Equação de Torricelli
A função horária do espaço relaciona as posições com os instantes. Por outro lado, nos movimentos variados, a cada instante há uma velocidade. Podemos, então, estabelecer uma relação direta entre as posições e as respectivas velocidades. Esse procedimento é conveniente nas situações em que a variável tempo não aparece. Resumidamente, a equação é:
Por Domiciano Marques
Graduado em Física
Equipe Brasil Escola
Fonte: http://www.brasilescola.com